An Introduction to

Open World Object Detection

Presenter: Liu Dai
05/14/2022
CONTENTS

1. Open-World Setting

2. Recap of Towards Open World Object Detection (OWOD)------------- Paper1(recap)

3. Follow-ups of 2D-OWOD
 3.1 Revisiting Open World Object Detection------------------------ Paper2
 3.2 Transformer based OWOD
 3.2.1 DeTR: A Transformer-based Object Detector---------- Paper3(sketch)
 3.2.2 OW-DETR: Open-world Detection Transformer---------- Paper4

4. Novel Class Discovery(sketch)
1. Open-World Setting

<table>
<thead>
<tr>
<th>Settings</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed-set</td>
<td>Classification</td>
</tr>
<tr>
<td>Open-set</td>
<td>Object Detection</td>
</tr>
<tr>
<td>Open-world</td>
<td>Segmentation</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
1. Open-World Setting

Settings

- Closed-set
- Open-set
- Open-world

Tasks

- Classification
- Object Detection
- Segmentation

Take Classification for example:

- : instances belong to **known** labels
- : instances belong to **unknown** labels

Classifier

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Training Set</th>
<th>Test Set</th>
<th>After Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed-set</td>
<td></td>
<td></td>
<td>No Action</td>
</tr>
<tr>
<td>Open-set</td>
<td></td>
<td></td>
<td>No Action</td>
</tr>
<tr>
<td>Open-world</td>
<td></td>
<td></td>
<td>Incremental Learning</td>
</tr>
</tbody>
</table>

An open-world classifier across its life span:

```
...... → Oracle Labelling → Incremental Learning → Classify known classes and pick out unknowns → ......
```

05/14/2022

Compared with Classical Faster-RCNN:

(*) The article has been cited for 61 times until 05/14/2022.
2. Recap of *Towards Open World Object Detection*

(Original OWOD)

Based on Faster-RCNN, ORE adds 3 new modules:
① Auto-labelling unknown regions with RPN
② Contrastive Clustering
③ Energy-based Unknown Identifier(EBUI)

Compared with Classical Faster-RCNN:

(*) The article has been cited for 61 times until 05/14/2022.
2. Recap of *Towards Open World Object Detection* (Original OWOD)

Note:
1. OWOD directly uses an off-shelf incremental learning method after ORE.
2. EBUI uses *Weibull distribution* to fit the known/unknown energy values, verified by a held-out validation set.

Compared with Classical Faster-RCNN:

(*) The article has been cited for 61 times until 05/14/2022.
2. Recap of *Towards Open World Object Detection*

Question: What is the difference between OWOD and Open-set Object Detection?

Paper 2.1: *Dropout Sampling for Robust Object Detection in Open-Set Conditions*, D Miller et al, QUT, ICRA 2018
[Deal with label uncertainty via Dropout Sampling to reject previously unseen objects.]
(111 citations until 05/12/2022)

Paper 2.2: *The Overlooked Elephant of Object Detection: Open Set*, Akshay Dhamija et al, UCCS, WACV 2020
[First to formalize the issue of open-set object detection. NO new methods, conducting experiments on some SOTA closed-set detectors.]
(30 citations until 05/12/2022)

Paper 2.3: *Uncertainty for Identifying Open-Set Errors in Visual Object Detection*, D Miller et al, QUT, RAL 2021
(7 citations until 05/12/2022)

……
2. Recap of *Towards Open World Object Detection*

Question: What is the difference between OWOD and Open-set Object Detection?

Paper 2.1: *Dropout Sampling for Robust Object Detection in Open-Set Conditions*, D Miller et al, QUT, ICRA 2018
[Deal with label uncertainty via Dropout Sampling to reject previously unseen objects.] (111 citations until 05/12/2022)

[First to formalize the issue of open-set object detection. NO new methods, conducting experiments on some SOTA closed-set detectors.] (30 citations until 05/12/2022)

Paper 2.3: *Uncertainty for Identifying Open-Set Errors in Visual Object Detection*, D Miller et al, QUT, RAL 2021
(7 citations until 05/12/2022)

……

Conclusion: There is actually NO concrete gap between OWOD and Open-set Object Detection, both of them need an open-set detector.
2. Recap of *Towards Open World Object Detection*

Question: What is the difference between OWOD and Open-set Object Detection?

Paper 2.2: *The Overlooked Elephant of Object Detection: Open Set*, Akshay Dhamija et al, UCCS, WACV 2020
2. Recap of *Towards Open World Object Detection*

Question: What is the difference between OWOD and Open-set Object Detection?

Paper 2.2: *The Overlooked Elephant of Object Detection: Open Set*, Akshay Dhamija et al, UCCS, WACV 2020

- **K**\textsubscript{k}: known knowns
- **K**\textsubscript{u}: unknown knowns
- **U**\textsubscript{m}: mixed unknowns
- **U**\textsubscript{k}: known unknowns
- **U**\textsubscript{u}: unknown unknowns

Training image

K\textsubscript{k}: known knowns

U\textsubscript{m}: mixed unknowns

Test image

K\textsubscript{u}: unknown knowns

U\textsubscript{k}: known unknowns

U\textsubscript{u}: unknown unknowns

U\textsubscript{m} refers to unlabelled objects in the dataset, but different to **U**\textsubscript{k} which contains the authentic background or garbage objects, like sky, grass, trees.

Both **U**\textsubscript{m} and **U**\textsubscript{k} are NOT labelled in the dataset.

Article’s view:
The presence of **U**\textsubscript{m} CANNOT be 100% avoided, we can only reduce the number of **U**\textsubscript{m}.
3.1 Revisiting Open World Object Detection

Revisiting Open World Object Detection, Xiaowei Zhao et al, Beihang University, preprint 2022.1

(1) Improvement in methods compared with ORE in OWOD (still based on Faster-RCNN)

A. Unknown aware RPN

Drawback:
Trained on labeled known objects, unknown-aware-RPN may roll out some authentic background regions as unknown objects mistakenly, as shown below.

(*) The article was written in CVPR format, but not published by CVPR2022, submission unclear. Citation = 1 05/14/2022
3.1 Revisiting Open World Object Detection

Revisiting Open World Object Detection, Xiaowei Zhao et al, Beihang University, preprint 2022.1

(1) Improvement in methods compared with ORE in OWOD (still based on Faster-RCNN)

A. Unknown aware RPN

Drawback:
Trained on labelled known objects, unknown-aware-RPN may roll out some authentic background regions as unknown objects mistakenly, as shown below.

Solution:
Introduce an Auxiliary Proposal Advisor, which can be actually any unsupervised object detection approach, like Selective Search. The advisor helps to confirm the proposals produced by RPN.

\[
\bar{S}_i = S_i \times \mathcal{I}\{\max_{1 \leq j \leq |\mathcal{P}^+|} (\text{IOU}(\mathcal{P}_i^{(u)}, \mathcal{P}_j^{+})) > \theta\}, \quad (\text{S: Objectness Score})
\]
3.1 Revisiting Open World Object Detection

Revisiting Open World Object Detection, Xiaowei Zhao et al, Beihang University, preprint 2022.1

(1) Improvement in methods compared with ORE in OWOD (still based on Faster-RCNN)

B. Energy-based Unknown Identifier

Drawback: The UBUI is charged with its data leakage risk because the Weibull Distribution to fit the known/unknown energy values is chosen based on a side validation set (with annotations for unknown objects).

(*) The article was written in CVPR format, but not published by CVPR2022, submission unclear. Citation = 1
3.1 Revisiting Open World Object Detection

Revisiting Open World Object Detection, Xiaowei Zhao et al, Beihang Univeristy, preprint 2022.1

(1) Improvement in methods compared with ORE in OWOD (still based on Faster-RCNN)

B. Energy-based Unknown Identifier

Drawback:
The UBUI is charged with its data leakage risk because the Weibull Distribution to fit the known/unknown energy values is chosen based on a side validation set (with annotations for unknown objects).

Solution: Class-Specific Expelling Classifier

(*) The article was written in CVPR format, but not published by CVPR2022, submission unclear. Citation = 1
3.1 Revisiting Open World Object Detection

Revisiting Open World Object Detection, Xiaowei Zhao et al, Beihang University, preprint 2022.1

(2) New Benchmark Protocols for Open-World Object Detection

The new benchmark meets 5 principles list below: ✓ : principle already met by OWOD ❌ : principle NOT met yet by OWOD
A. Class Openness: During testing, instances from known classes and unknown classes all appear.
B. Task Increment: Known classes are increasing in size, the task is thus incrementally developed.
C. Annotation Specificity:
 For training and validation set, only labels of known classes are assigned.
 For test set, labels of both known and unknown classes are assigned, all novel classes as unseen.
D. Label Integrity
 Ask for a fully-annotated dataset for testing, avoiding false-positive mistakes.
E. Data Specificity
 Ask for NO duplication inside dataset for testing.
 e.g., sofa as known class, and furniture as unknown class.

(3) New metrics for Evaluation of Open-World Object Detection models. (skip over here)
3.2 Transformer-based OWOD (OW-DeTR)

3.2.1 * DeTR: A Transformer-based Object Detector

(*) End-to-End Object Detection with Transformers, Nicolas Carion et al, FAIR, ECCV 2020
3.2 Transformer-based OWOD (OW-DeTR)

3.2.1 *DeTR: A Transformer-based Object Detector

(*) End-to-End Object Detection with Transformers, Nicolas Carion et al, FAIR, ECCV 2020
3.2 Transformer-based OWOD (OW-DeTR)

3.2.1 *DeTR: A Transformer-based Object Detector

(*) End-to-End Object Detection with Transformers, Nicolas Carion et al, FAIR, ECCV 2020
3.2 Transformer-based OWOD (OW-DeTR)

3.2.1 * DeTR: A Transformer-based Object Detector

Object Queries: Learnable Positional Embeddings, fixed numbers as N.
1. N refers to the maximum number of object predictions of the model.
2. Each query ‘focus’ on some specific region of the image.
3. Randomly initialized.

(1) **FFN (Prediction Feed-Forward Network):**
- **FFN**: MLP and a linear projection layer to produce predictions for classes and bounding boxes.
 Fixed output numbers: N

(2) **Pair-wise Matching:**
- **σ**: pair-wise matching policy
 \[\hat{\sigma} = \arg \min_{\sigma \in \mathcal{S}_N} \sum_i \mathcal{L}_{\text{match}}(y_i, \hat{y}_{\sigma(i)}) \]
 \((y : \text{GT}, \hat{y}^{\text{hat}} : \text{prediction}) \)
- **\mathcal{L}_{\text{match}}**: pair-wise matching cost
 \[= L_{\text{class}} + L_{\text{box}} \]

NOTE: The matching policy \(\sigma \) is efficiently calculated by Hungarian Algorithm.

(*) End-to-End Object Detection with Transformers, Nicolas Carion et al, FAIR, ECCV 2020
3.2 Transformer-based OWOD(OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer*, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

Improvements of OW-DeTR compared with original OWOD:

1. An end-to-end framework for Open-World Object Detection. (Incremental Learning still left outside)

2. Abandon the held-out validation for unknown identifier, **avoiding data leakage**.

3. Considering **background VS foreground** to better constitute a **valid object**.

4. Attention-driven **pseudo labeling** overcomes the bias caused by unknown-aware RPN

Note:
The **OW-DeTR** is based on the **Deformable DeTR(DDeTR)** instead of the **original DeTR**, yet the deformable one is just with minor changes to the original one.

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD (OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(1) Architecture of OW-DeTR

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD (OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer*, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(1) Architecture of OW-DeTR

What is new in DDeTR vs DeTR
(1) Multi-scale Context
(2) Deformable encoder/decoder

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD (OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer*, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(1) Architecture of OW-DeTR

(*) This paper shares some same authors as original OWOD.

05/14/2022
3.2 Transformer-based OWOD (OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(1) Architecture of OW-DeTR

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD(OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(2) Attention-driven Pseudo Labeling

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD (OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer*, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(2) Attention-driven Pseudo Labeling

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD (OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer*, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(2) Attention-driven Pseudo Labeling

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD (OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer*, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(2) Attention-driven Pseudo Labeling

\[
\text{objectness score } s_{o}(b) = \frac{1}{h_b \cdot w_b} \sum_{x_b - \frac{w_b}{2}}^{x_b + \frac{w_b}{2}} \sum_{y_b - \frac{h_b}{2}}^{y_b + \frac{h_b}{2}} A,
\]

\[
s(b4) = 0.32, s(b5) = 0.31, s(b6) = 0.28, s(b7) = 0.53
\]

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD (OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer*, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(2) Attention-driven Pseudo Labeling

\[\text{Rank them, then select } \text{top-K as pseudo unknown object regions} \]

\[s(b_4) = 0.32, s(b_5) = 0.31, s(b_6) = 0.28, s(b_7) = 0.53 \]

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD (OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer*
Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(3) Novelty Classification

- **Novelty Classification**
- **top-K** selected pseudo unknown object regions
- **K** corresponding query embeddings \(\{q_e^u\} \)
- Assign label *unknown* to these \(\{q_e^u\} \)

The Novelty Classification branch is trained to assign **known object region embeddings** to the known labels, and \(\{q_e^u\} \) to *unknown*.

LOSS: \(L_n \)

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD (OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer*, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(4) **Objectness Branch**

Score the query embeddings:

$$F_{obj} : \mathbb{R}^D \rightarrow [0, 1]$$

Known and unknowns objects → foreground

Background (no objects) → background

foreground: objectness score → 1

LOSS: \(L_o \)

* This part wasn’t clearly explained in the article, citing the *Focal Loss*, proposed by Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In ICCV, 2017. 5, 8

(*) This paper shares some same authors as original OWOD.
3.2 Transformer-based OWOD(OW-DeTR)

3.2.2 *OW-DeTR: Open-world Detection Transformer*, Akshita Gupta and K J Joseph et al, IIT, CVPR 2022

(5) Conclusion of OW-DeTR

\[\mathcal{L} = \mathcal{L}_n + \mathcal{L}_r + \alpha \mathcal{L}_o, \]

Methods:
Some new modules added to DDeTR; **highlight**: Attention-driven Pseudo Labeling

Experiments & Evaluation:
similar to original OWOD
Same **datasets** (Pascal VOC, MSCOCO)
Same **metrics** (WI,A-OSE,mAP)

(*) This paper shares some same authors as original OWOD.
4. Novel Class Discovery (NCD)

4.1 Setting

Take Classification for example:

- : instances belong to **known** labels
- : instances belong to **unknown** labels

![Diagram]

Training Set **Test Set**

- **Open-set**
 - **NCD**
 - **Known**
 - **Original Open-world**

- **Open-world**
 - **Incremental Learning**
 - **Category-level manual labelling**
 - **Instance-level manual labelling**
4. Novel Class Discovery (NCD)

4.2 NCD for classification

[Improvement of DTC]

Paper 4.3: *Novel Visual Category Discovery with Dual Ranking Statistics and Mutual Knowledge Distillation*, Bingchen Zhao and Kai Han et al, NIPS 2021
[Improvement of AutoNovel]

Paper 4.4: *Generalized Category Discovery*, Sagar Vaze and Kai Han et al, CVPR 2022

Paper 4.5: *Spacing Loss for Discovering Novel Categories*, KJ Joseph and Kai Han et al, CVPRW 2022

Note: KJ Joseph is the first author of original OWOD, CVPR 2021
4. Novel Class Discovery (NCD)

4.3 Open-world Classification + NCD

Paper 4.6: *Open-World Semi-supervised Learning (OWSSL)*, Kaidi Cao et al., Stanford, ICLR 2022

4.4 Open-set Object Detection + NCD

Paper 4.7: *Towards Open-set Object Detection and Discovery*, Jiayng Zheng et al., ANU, CVPRW 2022