Embodied Navigation Tasks

Speaker: Liu Dai Collaborator: Fanpeng Meng Advisor: Jiazhao Zhang, He Wang

Sep. 8, 2022

Embodied Perception and InteraCtion Lab

CONTENT

- Task Introduction
 - Task Definition
 - Habitat Challenge
- Selected Papers
 - Map-Based Methods
 - Vision-Based Methods

Task Introduction

• **Definition** of **Navigation**: Direct or find a way *from one place to another*.

• **Definition** of **Navigation**: Direct or find a way *from one place to another*.

Outdoor Navigation

Indoor Navigation

• **Definition** of **Navigation**: Direct or find a way *from one place to another*.

- **Definition** of **Navigation**: Direct or find a way *from one place to another*.
- **Outdoor Navigation**

Challenges:

- a) No HD Map
- b) Noisy Indoor Positioning
- c) Real 3D Environment

Values:

- a) Necessary for Embodied AI
- b) Home Robot
- c) Robot for Special Tasks

• **Definition** of **Navigation**: Direct or find a way *from one place to another*.

• **Definition** of **Navigation**: Direct or find a way *from one place to another*.

Explicit Target Locations:

Point Goal

Goal : Go 5m south, 3m west relative to start.

• **Definition** of **Navigation**: Direct or find a way *from one place to another*.

Explicit or *Implicit* Target Locations:

Point Goal

Image Goal

Goal : Go 5m south, 3m west relative to start.

Goal : *Go where the photo was taken.*

• Definition of Navigation: Direct or find a way from one place to another.

Explicit or *Implicit* Target Locations:

Point Goal

Goal : Go 5m south, 3m west relative to start.

Image Goal

Goal:

Go where the photo was taken.

Object Goal

Goal : *Go find a sofa.*

• How to Evaluate?

(1) Success Rate

(2) SPL (Success Weighted by Path Planning)

$$SPL = \frac{1}{N} \sum_{i=1}^{N} S_i \frac{l_i}{\max(p_i, l_i)}$$

 S_i : binary for success l_i : shortest path length p_i : actual path length

(3) Soft SPL

 $SoftSPL = rac{1}{N}\sum_{i=1}^{N}\left(1 - rac{d_{T_i}}{d_{init_i}}
ight)\left(rac{l_i}{max(p_i,l_i)}
ight)$

 d_{Ti} : distance to target location d_{initi} : distance to start location

(4) Distance to Goal

• How to Evaluate?

(1) Success Rate

(2) SPL (Success Weighted by Path Planning)

SPL	=	$\frac{1}{N} \sum_{i=1}^{N} S_i \frac{1}{N}$	$\frac{l_i}{\max(p_i, l_i)}$
-----	---	--	------------------------------

 S_i : binary for success l_i : shortest path length p_i : actual path length

(3) Soft SPL

 $SoftSPL = \frac{1}{N} \sum_{i=1}^{N} \left(1 - \frac{d_{T_i}}{d_{init_i}} \right) \left(\frac{l_i}{max(p_i, l_i)} \right)$

 d_{Ti} : distance to target location d_{initi} : distance to start location

(4) Distance to Goal

• Datasets:

(1) Matterport 3D(MP3D)

Proposed in 2017

(2) Gibson 3D

Proposed in CVPR 2018

(3) Habitat Matterport 3D

Proposed in NIPS 2021

Larger

More Realistic

More Information

Why do we care about Navigation?

Basic Module of Embodied AI: Navigation + Manipulation

Why do we care about Navigation?

Basic Module of Embodied AI: Navigation + Manipulation

Why do we care about Navigation?

Basic Module of Embodied AI: Navigation + Manipulation

Habitat Challenge

PointGoal Nav 2019 - 2021

ObjectGoal Nav 2020 -

Rearrangement 2022 -

Habitat Challenge

Habitat Challenge

Selected Papers

Learning to Explore Using Active Neural SLAM

Devendra Singh Chaplot^{1†}, **Dhiraj Gandhi**², **Saurabh Gupta**^{3*}, **Abhinav Gupta**^{1,2*}, **Ruslan Salakhutdinov**^{1*} ¹Carnegie Mellon University, ²Facebook AI Research, ³UIUC

(ICLR 2020)

Learning to Explore Using Active Neural SLAM

Devendra Singh Chaplot^{1†}, **Dhiraj Gandhi**², **Saurabh Gupta**^{3*}, **Abhinav Gupta**^{1,2*}, **Ruslan Salakhutdinov**^{1*} ¹Carnegie Mellon University, ²Facebook AI Research, ³UIUC

(ICLR 2020)

Goal: Maximize Exploration Coverage in a fixed time budget

Input: RGB Image, Pose Sensor with Noise

2 Channels of Occupancy Map: A Location being Occupied & Explored

	Gibson Val		Domain Generalization MP3D Test	
Method	% Cov.	Cov. (m2)	% Cov.	Cov. (m2)
RL + 3LConv [1]	0.737	22.838	0.332	47.758
RL + Res18	0.747	23.188	0.341	49.175
RL + Res18 + AuxDepth [2]	0.779	24.467	0.356	51.959
RL + Res18 + ProjDepth [3]	0.789	24.863	0.378	54.775
Active Neural SLAM (ANS)	0.948	32.701	0.521	73.281

PointNav in Habitat Challenge 2019

Input: RGB/RGB-D + Perfect Pose Sensor

What's new in PointNav of Habitat Challenge 2020:

What's new in PointNav of Habitat Challenge 2020:

What's new in PointNav of Habitat Challenge 2020:

What's new in PointNav of Habitat Challenge 2020:

2020 Winner!

Occupancy Anticipation for Efficient Exploration and Navigation (ECCV 2020)

Santhosh K. Ramakrishnan^{1,2}, Ziad Al-Halah¹, and Kristen Grauman^{1,2}

¹ The University of Texas at Austin, Austin TX 78712, USA
² Facebook AI Research, Austin TX 78701, USA

For PointNav: Fix the target location as global goal.

Occupancy Anticipation

Goal: Go 5m south, 3m west.

Input: RGB-D Image

Rank	Team	SPL	SOFT_SPL	DISTANCE_TO_GOAL	SUCCESS
1	OccupancyAnticipation	0.21	0.50	2.29	0.28
2	ego-localization	0.15	0.60	1.82	0.19
3	DAN	0.13	0.24	4.00	0.25
4	Information Bottleneck	0.06	0.43	2.72	0.09
5	cogmodel_team	0.01	0.33	4.27	0.01
6	UCULab	0.001	0.11	5.97	0.002

Q: Why Occupancy Anticipation works for PointNav?

A: Better modeling the navigable spaces.

Q: Why Occupancy Anticipation works for PointNav?

A: Better modeling the navigable spaces.

Q: Why the performance drops so much if not given a pose sensor?

A: Bad pose estimation becomes a drag on map-based methods.

Input: RGB-D Input + Oracle Pose Sensor

Goal: Find a chair

Input: RGB-D Input + Oracle Pose Sensor

Goal: Find a chair

How to transfer the pipeline to Object Goal Navigation?

2020 Winner!

Object Goal Navigation using Goal-Oriented Semantic Exploration

(NeurIPS 2020)

Devendra Singh Chaplot^{1†}, **Dhiraj Gandhi**², **Abhinav Gupta**^{1,2*}, **Ruslan Salakhutdinov**^{1*} ¹Carnegie Mellon University, ²Facebook AI Research

Drawbacks:

Fig. 4: Tasked to go to a bed, the agent mistakes the sofa as a bed in the last frame and stops. Such a false detection results in failure. Fig. 4 comes from *Stubborn: A Strong Baseline for Indoor Object Navigation*, Hankuan Luo et al.

Other Map-Based Methods for ObjecNav

PONI: Potential Functions for ObjectGoal Navigation with Interaction-free Learning

(CVPR 2022, Oral)

Santhosh Kumar Ramakrishnan^{1,2}, Devendra Singh Chaplot¹, Ziad Al-Halah², Jitendra Malik^{1,3}, Kristen Grauman^{1,2} ¹Meta AI ²UT Austin ³UC Berkeley

2021 Runner-up for PointNav!

Robust Visual Odometry for Realistic Point-Goal Navigation

Ruslan Partsey¹, Oleksandr Maksymets², and Oles Dobosevych¹

¹ Ukrainian Catholic University ² Facebook AI Research

Goal: Go 5m south, 3m west relative to start.

Input: Only RGB-D Image with noise.

Overview

Two Separately-Trained Modules:

- 1) Navigation Policy (blue)
- 2) Visual Odometry (pink)

Overview

Navigation Policy:

Architecture: LSTM + ResNet18 Training: PPO

Input: Depth + GT Pose + ... (Replace GT Pose with Visual Odometry in evaluation)

Output: Action, ...

Overview

Visual Odometry

Tricks for Visual Odometry1) How to embed meta-info?bsbs+col_em2) Whether to crop out interested area?bs+col_embs+col_em

3) Data Augmentation?

Experiment name	Enach	Translation MAE				Rotation MAE			
Experiment name	Еросп	Total	Forward	Left	Right	Total	Forward	Left	Right
1	20	4.61	5.41	3.48	3.67	2.37	1.58	3.61	3.17
DS	40	4.10	4.53	3.47	3.65	1.85	1.29	2.65	2.49
have all such	20	5.51	6.99	3.48	3.73	2.98	2.15	3.90	4.18
bs + col_emb	40	4.65	5.45	3.56	3.67	2.40	1.64	3.28	3.45
he hast smb	20	3.13	2.86	3.45	3.48	1.32	0.99	1.74	1.76
bs + act_emb	40	2.89	2.39	3.43	3.65	1.15	0.78	1.62	1.65
he had such has touch	20	3.10	2.80	3.37	3.62	1.37	1.02	1.79	1.87
$DS + COI_emD + act_emD$	40	3.00	2.56	3.48	3.65	1.26	0.84	1.74	1.85
had a set amb 26s	20	3.00	2.67	3.39	3.47	1.25	0.96	1.58	1.68
bs + act_emb 2fc	40	2.89	2.43	3.41	3.58	1.16	0.82	1.59	1.63
had call such a stamp of	20	3.08	2.80	3.38	3.49	1.24	0.94	1.59	1.65
$DS + COI_emD + act_emD 2IC$	40	2.87	2.43	3.31	3.57	1.17	0.85	1.55	1.60
has a set such 26s + reflin	20	2.92	2.54	3.37	3.44	1.14	0.85	1.51	1.53
bs + act_emb 2ic + vinp	40	2.73	2.30	3.23	3.32	1.03	0.73	1.41	1.41
he hast such 26a haufling hims not	20	2.89	2.62	3.20	3.30	1.06	0.82	1.37	1.37
$bs + act_emb 2ic + viip + inv_rot$	40	2.76	2.42	3.17	3.23	0.96	0.69	1.28	1.32
ha + a st smb 2fs + 220×4E0 > 160×22E	20	3.28	3.41	3.03	3.19	1.24	1.09	1.40	1.49
s + act_emb 2fc + 320x450->160x22	40	3.14	3.18	3.01	3.16	1.15	0.95	1.38	1.44
ha h a sh amh 26s h 220s 450 s 180s 220	20	3.12	3.15	3.02	3.16	1.26	1.02	1.57	1.57
$bs + act_emb 2ic + 320x450 -> 180x320$	40	2.94	2.89	3.00	3.00	1.18	1.00	1.41	1.42
ha + a st amb 26s + 220+250 > 180+220	20	3.17	3.58	2.59	2.67	1.18	1.14	1.19	1.27
$DS + act_emb 2ic + 320x350 -> 180x320$	40	2.76	3.05	2.36	2.41	0.98	0.95	1.02	1.00
and the state	20	3.49	NA	NA	3.49	1.73	NA	NA	1.73
sepact_right	40	3.46	NA	NA	3.46	1.71	NA	NA	1.71
acres at left	20	3.34	NA	3.34	NA	1.76	NA	1.76	NA
sepact_left	40	3.27	NA	3.27	NA	1.55	NA	1.55	NA
compat find	20	2.75	2.75	NA	NA	0.97	0.97	NA	NA
sepact_iwd	40	2.27	2.27	NA	NA	0.77	0.77	NA	NA
ha hast amb 26a hlassla	20	2.37	1.88	2.97	3.03	0.82	0.53	1.22	1.18
$DS + act_errib 2rc + iscale$	40	2.21	1.65	2.91	2.95	0.77	0.48	1.15	1.15
									66

TABLE 4.7: Visual odometry metrics (subject to 1e+2 multiplication).

Tricks for Visual Odometry

- 1) How to embed meta-info?
- 2) Whether to crop out interested area?
- 3) Data Augmentation?

Questions:

- 1) Why a simple LSTM + a tricky Visual Odometry work so well for PointNav?
- 2) With a good Visual Odometry, will map-based methods also work well for the task?

Even owing and a game of	Erroch	Translation MAE				Rotation MAE				
Experiment name	Lpoen	Total	Forward	Left	Right	Total	Forward	Left	Right	
1	20	4.61	5.41	3.48	3.67	2.37	1.58	3.61	3.17	
DS	40	4.10	4.53	3.47	3.65	1.85	1.29	2.65	2.49	
he i sel such	20	5.51	6.99	3.48	3.73	2.98	2.15	3.90	4.18	
bs + col_emb	40	4.65	5.45	3.56	3.67	2.40	1.64	3.28	3.45	
ha i act amh	20	3.13	2.86	3.45	3.48	1.32	0.99	1.74	1.76	
bs + act_emb	40	2.89	2.39	3.43	3.65	1.15	0.78	1.62	1.65	
ha i col omb i act omb	20	3.10	2.80	3.37	3.62	1.37	1.02	1.79	1.87	
bs + col_enib + act_enib	40	3.00	2.56	3.48	3.65	1.26	0.84	1.74	1.85	
he hast omb 2fa	20	3.00	2.67	3.39	3.47	1.25	0.96	1.58	1.68	
DS + act_enil 21c	40	2.89	2.43	3.41	3.58	1.16	0.82	1.59	1.63	
he had omb had omb 2fa	20	3.08	2.80	3.38	3.49	1.24	0.94	1.59	1.65	
$DS + COI_end + act_end zic$	40	2.87	2.43	3.31	3.57	1.17	0.85	1.55	1.60	
he hast omb 2fe hyflin	20	2.92	2.54	3.37	3.44	1.14	0.85	1.51	1.53	
bs + act_enib zic + vinp	40	2.73	2.30	3.23	3.32	1.03	0.73	1.41	1.41	
ha hast omb 2fa hyflin hiny rot	20	2.89	2.62	3.20	3.30	1.06	0.82	1.37	1.37	
$bs + act_end 2ic + vnp + nv_rot$	40	2.76	2.42	3.17	3.23	0.96	0.69	1.28	1.32	
h_{2} + act amb $2f_{2}$ + $220x450 > 160x225$	20	3.28	3.41	3.03	3.19	1.24	1.09	1.40	1.49	
DS + act_enil 21c + 320x430->100x223	40	3.14	3.18	3.01	3.16	1.15	0.95	1.38	1.44	
$h_{2} + a_{2} + a_{2} + 220 \times 150 \times 180 \times 220$	20	3.12	3.15	3.02	3.16	1.26	1.02	1.57	1.57	
DS + act_enil 21c + 520x450->180x520	40	2.94	2.89	3.00	3.00	1.18	1.00	1.41	1.42	
$h_{c} + a_{c}t$ amb $2f_{c} + 320x350 > 180x320$	20	3.17	3.58	2.59	2.67	1.18	1.14	1.19	1.27	
DS + act_enil 21c + 520x550->180x520	40	2.76	3.05	2.36	2.41	0.98	0.95	1.02	1.00	
sonast right	20	3.49	NA	NA	3.49	1.73	NA	NA	1.73	
sepaci_right	40	3.46	NA	NA	3.46	1.71	NA	NA	1.71	
sonact loft	20	3.34	NA	3.34	NA	1.76	NA	1.76	NA	
sepaci_ieit	40	3.27	NA	3.27	NA	1.55	NA	1.55	NA	
sopact fund	20	2.75	2.75	NA	NA	0.97	0.97	NA	NA	
sepaci_iwu	40	2.27	2.27	NA	NA	0.77	0.77	NA	NA	
bs + act amb 2fs + legala	20	2.37	1.88	2.97	3.03	0.82	0.53	1.22	1.18	
$D5 + act_end 2ic + iscale$	40	2.21	1.65	2.91	2.95	0.77	0.48	1.15	1.15	

TABLE 4.7: Visual odometry metrics (subject to 1e+2 multiplication).

2021 Winner for ObjectNav!

Auxiliary Tasks and Exploration Enable ObjectGoal Navigation (ICCV 2021)

Joel Ye^{1*} Dhruv Batra^{1,2} Abhishek Das² Erik Wijmans¹

¹Georgia Institute of Technology ² Facebook AI Research

Goal: Go find a chair.

Input: RGB-D Image with noise + Perfect Pose Sensor

Auxiliary Tasks:

(1) Inverse Dynamics (ID)

Decoding action taken from two

successive observations.

Auxiliary Tasks:

(1) Inverse Dynamics (ID)

Decoding action taken from two

successive observations.

(2) Temporal Distance (TD)

Decoding the timestep difference

between two observations.

$$L_{TD} = \frac{1}{2}((i-j) - \mathcal{T}(\phi_i, \phi_j, h_T))^2$$

Auxiliary Tasks:

(1) Inverse Dynamics (ID)

Decoding action taken from two successive observations.

(3) Action-Conditional Contrastive Predictive

Coding (CPC | A)

Decoding future visual embeddings at every timestep from other visual embeddings using a secondary GRU.

(2) Temporal Distance (TD)

Decoding the timestep difference

between two observations.

Auxiliary Tasks:

(1) Inverse Dynamics (ID)

Decoding action taken from two successive observations.

(3) Action-Conditional Contrastive Predictive

Coding (CPC | A)

Decoding future observation embeddings at every timestep from other observation embeddings using a secondary GRU.

(2) Temporal Distance (TD)

Decoding the timestep difference

between two observations.

(4) Action Distribution Prediction (ADP)

(5) Generalized Inverse Dynamics (GID)

(6) Coverage Prediction (CP)
ObjectNav in Habitat Challenge 2021

Fuse Auxiliary Tasks for ObjectNav:

SGE : the fraction of the frame occupied by the goal object.(Semantic Goal Exists)

Beliefs : Output cell States from all individual GRUs for Aux Tasks.

Fusion : An attention layer conditioned on the observation embedding.

 $L_{\text{total}}(\theta_m; \theta_a) = L_{\text{RL}}(\theta_m) - \alpha H_{action}(\theta) + L_{\text{Aux}}(\theta_m; \theta_a) \quad H_{action} : \text{entropy across action distribution}$ $L_{\text{Aux}}(\theta_m; \theta_a) = \sum_{i=1}^{n_{\text{Aux}}} \beta^i L_{\text{Aux}}^i(\theta_m; \theta_a^i) - \mu H_{attn}(\theta_m) \quad \begin{array}{l} H_{attn} : \text{entropy across attention distribution} \\ \text{over aux tasks} \end{array}$

Topic 1: Map-Based VS Vision-Based

Comment: Map-Based Methods with higher Interpretability & Expansibility

Topic 2: More Data VS More Elegant Methods

Background:

- (1) **PointNav** solved in 2021, achieving 99.6% success rate, with 2.5 billion training frames and a simple RNN network.
- (2) Boost performance in **GoalNav**, with auxiliary data(human annotated
- /synthetic/human demonstrations...)
- (3) **CLIP**

Question: How should we regard those who achieve nearly perfect performance if simply with big data?

References

Talks & Websites:

(1) Devendra Chaplot's Ph.D Thesis Defense <u>https://www.youtube.com/watch?v=rJ7tGT5cHtU</u>

(2) Habitat Challenge <u>https://aihabitat.org/challenge/2022/</u>

Papers:

- (1) Learning to Explore Using Active SLAM, Chaplot et al, ICLR2020
- (2) Occupancy Anticipation for Efficient Exploration and Navigation, Santhosh et al, ECCV2020
- (3) Object Goal Navigation using Goal-Oriented Semantic Exploration, Chaplot et al, NIPS2020
- (4) PONI: Potential Functions for ObjectGaol Navigation with Interaction-Free Learning, Santhosh et al, CVPR22
- (5) Robust Visual Odometry for Realistic Point-Goal Navigation, Partsey et al
- (6) Auxiliary Tasks and Exploration Enable ObjectGoal Navigation, Joel Ye et al, ICCV2021

Advisors: Jiazhao Zhang, He Wang

Thank you for your invaluable advices!

Embodied Navigation Tasks

Thanks for Listening! Any Questions?

Embodied Perception and InteraCtion Lab

